首页> 外文OA文献 >An unconditionally stable algorithm for generalized thermoelasticity based on operator-splitting and time-discontinuous Galerkin finite element methods
【2h】

An unconditionally stable algorithm for generalized thermoelasticity based on operator-splitting and time-discontinuous Galerkin finite element methods

机译:基于算子分裂和时间不连续Galerkin有限元方法的广义热弹性无条件稳定算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An efficient time-stepping algorithm is proposed based on operator-splitting and the space–time discontinuous Galerkin finite element method for problems in the non-classical theory of thermoelasticity. The non-classical theory incorporates three models: the classical theory based on Fourier’s law of heat conduction resulting in a hyperbolic–parabolic coupled system, a non-classical theory of a fully-hyperbolic extension, and a combination of the two. The general problem is split into two contractive sub-problems, namely the mechanical phase and the thermal phase. Each sub-problem is discretized using the space–time discontinuous Galerkin finite element method. The sub-problems are stable which then leads to unconditional stability of the global product algorithm. A number of numerical examples are presented to demonstrate the performance and capability of the method.
机译:针对非经典的热弹性理论中的问题,提出了一种基于算子分解和时空不连续的Galerkin有限元方法的高效时步算法。非经典理论包括三个模型:基于傅立叶热导定律的经典理论,导致双曲-抛物耦合系统;非经典理论的全双曲展开,以及两者的结合。一般问题分为两个收缩子问题,即机械阶段和热阶段。每个子问题使用时空不连续Galerkin有限元方法离散化。子问题是稳定的,这随后导致全局乘积算法的无条件稳定性。给出了许多数值示例,以证明该方法的性能和能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号